
College of Computer Science and information

Technology

Data Structures

 Lecturer: Dr. Raidah Salim

Data Structures Academic Year 2017-2018

Course objectives

 This course aims to make the student capable of understanding and writing

different data structures as:

 Array

 String

 Linked List

 Stack

 Queue

Introduction

 In computer science, a data structure is a particular way of organizing and storing

data in a computer so that it can be accessed and modified efficiently.

More precisely, a data structure is a collection of data values, the relationships

among them, and the functions or operations that can be applied to the data.

 Basic types of Data Structures

 Anything that can store data can be called as a data structure, hence integer,
float, boolean, char etc, all are data structures. They are known as Primitive Data
Structures.

 Then we also have some complex Data Structures(Abstract Data Structures),
which are used to store large and connected data. Some example of Abstract Data
Structures are :

 Linked List

 Tree

 Graph

 Stack, Queue

 The data structures can also be classified on the basis of the following
characteristics:

Characteristic Description

Linear In Linear data structures, the data items are arranged in a
linear sequence. Example: Array

Non-Linear In Non-Linear data structures, the data items are not in
sequence. Example: Tree, Graph

Homogeneous In homogeneous data structures, all the elements are of
same type. Example: Array

Non-
Homogeneous

In Non-Homogeneous data structure, the elements may or
may not be of the same type. Example: Structures

Data Structures Academic Year 2017-2018

Static Static data structures are those whose sizes and structures
associated memory locations are fixed, at compile time.
Example: Array

Dynamic Dynamic structures are those which expands or shrinks
depending upon the program need and its execution.
Example: Linked List

Classification according to structure :In these data structures the elements form a

sequence, or the elements do not form a sequence.

Classification according to Allocation memory :

Static memory allocation means the program must obtain its space before the

execution and cannot obtain more while or after execution.

Example: Arrays

Dynamic memory allocation is the ability for a program to obtain more memory

space at execution time to hold new nodes and to release space no longer needed.

Example: Linked Lists, Stacks, Queues and Trees

Data Structures Academic Year 2017-2018

All these data structures allow us to perform different operations on data:
1. Traversing: It is used to access each data item exactly once.
2. Searching: It is used to find out the location of the data item.
3. Inserting: It is used to add a new data item in the given collection of data
items.
4. Deleting: It is used to delete an existing data item from the given collection of
data items.
5. Sorting: It is used to arrange the data items in some order i.e. in ascending or
descending order.

The data structures can be viewed in two ways, physically and logically.
 The physical data structure refers to the physical arrangement of the data on

the memory.
 The logical data structure concerns how the data "seem" to be arranged and

the meanings of the data elements in relation to one another.

Arrays data structure

 An array is collection of items stored at continuous memory locations. The idea is

to store multiple items of same type together. This makes it easier to calculate the

position of each element by simply adding an offset to a base value(the memory

location of the first element of the array). Each element can be uniquely identified by

their index in the array.

Data Structures Academic Year 2017-2018

Types of indexing in array:
 0 (zero-based indexing): The first element of the array is indexed by subscript of

0
 1 (one-based indexing): The first element of the array is indexed by subscript of

1
 n (n-based indexing): The base index of an array can be freely chosen. Usually

programming languages allowing n-based indexing also allow negative index
values and other scalar data types like enumerations, or characters may be used
as an array index.

Features of Arrays
 An array is :

 Linear data structure: means organize in memory as linear order.
 homogeneous structure: all components in the structure are of the same

data type.
 finite structure : indicates that there is a last element.
 fixed size structure: mean that the size of the array must be known at

compile time.
 contiguously data structure: means that there is a first element, a second

element, and so on.

 The component selection mechanism of an array is direct access(random
access), which means we can access any element directly (by using specific
equation), without first accessing the preceding elements. This makes accessing
elements by position faster.

 A one-dimensional array is homogeneous structure, it can be visualized as a list.
Logical structure for one-dimensional array with 15 elements as shown below:

Physical structure for one-dimensional array with five elements will appear in
memory as shown below:

Data Structures Academic Year 2017-2018

We can find out the location of any element by using following formula:

Loc (ArrayName [k]) = Loc (ArrayName [1]) + (k-LB)* w

where:
 Loc (ArrayName [k]): is the address of the kth element of ArrayName.
Loc (ArrayName [1]): is the base address or address of first element of ArrayName.
w : is the number of bytes taken by one element(element size).
LB : is the lower bound.

Example1 : Suppose we want to find out Loc (A [3]) that store as the following figure
in two case (LB=1 and LB=0), for it, we have: Base(A)=1000, w = 2 bytes.

in Case LB = 1
 LOC(A[3])=1000 + 2 (3 – 1)
= 1000 + 2 (2)
= 1000 + 4
= 1004

H.w. : Suppose the following declaration:
int A[6];
1. Draw the logical structure and physical structure for the array A.
2. Find Loc(A(5)) , where the first element of the array A =200.
 A two-dimensional array is also homogeneous structure, it can be visualized as a
table consisting of rows and columns. The element in a two-dimensional array is
accessed by specifying the row and column indexes of the item in the array. Logical
Level for two-dimensional array with 3(0-2) rows and 4(0-3)column elements will
appear as shown below:

LB=0 LB=1

If Case LB = 0
 LOC(A[3])=1000 + 2 *3
= 1000 + 6
= 1006

Data Structures Academic Year 2017-2018

 In the computer memory, all elements are stored linearly using contiguous

addresses. Therefore, in order to store a two-dimensional matrix, two dimensional

address space must be mapped to one-dimensional address space. There two

methods for arranging two or multidimensional :

1. Row-major order

2. Column-major order

For example the physical structure for array with 3X3 elements will appear in
memory as shown below in two methods:

 In row-major order:

o consecutive elements of the rows of the array are contiguous in memory.
o Used in C, C++, PL/I, Pascal, Python and Java.

 in column-major order:
o consecutive elements of the columns are contiguous.
o Used in Fortran, OpenGL and Matlab.

Example: The following array:

Data Structures Academic Year 2017-2018

A would be stored as follows in the two orders:

 We can find out the location of any element in array (NXM) by using following
formulas:

1. In case of Row Major Order:
Loc (A [i, j]) = Loc (A [1,1]) +([i-1]*M+ [j-1]) * w

where:
Loc(A[[i,j]) : is the location of the element in the ith row and jth column.
Loc (A [1,1]) : is the base address or address of the first element of the array A.
w : is the number of bytes required to store single element of the array A.
M : is the total number of columns in the array.

Example: finding the location (address) of element in 2D
Suppose A 3 x 4 (N=3 and M=4) integer array A is show as below and base address

= 1000 and number of bytes=2. find the location of A [3,2]:

LOC (A [3,2]) = 1000 + 2 [4 (3-1) + (2-1)]
= 1000 + 2 [4 (2) + 1]
= 1000 + 2 [8 + 1]
= 1000 + 2 [9]
= 1000 + 18
= 1018

2. In case of Column Major Order:

Loc (A [i,j]) = Loc (A [1, 1]) + ([j-1]*N+ [i-1])*w

10

20

50

60

90

40

30

80

75

55

65

79

1000
1002
1004
1006

1008
1010
1012
1014
1016
1018
1020
1022

Address Elements

Data Structures Academic Year 2017-2018

 where
Loc(A[i,j]): is the location of the element in the ith row and jth column.
Loc (A [1,1]): is the base address or address of the first element of the array A.
w: is the number of bytes required to store single element of the array A.
N: is the total number of rows in the array.

Example: finding the location (address) of element in 2D
Suppose A 3 x 4 (N=3 and M=4) integer array A and base address =1000 and

number of bytes=2. find the location of A [3,2]:

LOC (A [3,2]) = 1000 + 2 [3 (2-1) + (3-1)]
= 1000 + 2 [3 (1) + 2]
= 1000 + 2 [3 + 2]
= 1000 + 2 [5]
= 1000 + 10
= 1010

Note: if the value of w not determine, it suppose equal to 1.

H.W.
1. You have the matrix A [3, 4] and the base address is 1500. By using rows major order:
a. Draw logical structure and physical structure of the matrix A.
b. find the address of the element A [2, 3].

2. You have the matrix B [5, 6] and the base address is 500. By using two method of arrange
matrix in memory:

a. Draw logical structure and physical structure of the matrix B.
b. find the address of the element B [2, 3].

In case three Dimensional Arrays, memory-address of the element A[i,j,K] with dimension

(NXMXR) is given by:
where:

 R : number of levels
 N: number of rows
 M: number of column
In case of Row Major Order:

 Loc (A [i,j,k]) = Loc (A [1, 1, 1]) + ([k-1]*N*M+ [i-1]*M+ (j-1))*W

In case of Column Major Order:
 Loc (A [i,j,k]) = Loc (A [1, 1, 1]) + ([k-1]*N*M+ [j-1]*N+ (i-1))*W

1000
1002
1004
1006
1008
1010

1012
1014
1016
1018
1020
1022

10

90

75

20

40

55

50

30

65

60

80

79

Address Elements

Data Structures Academic Year 2017-2018

Example : Suppose A3 x 3 X 3(N=3, M=3 and R=3) integer array A and base address =1000 and

number of bytes(w)=2. find the location of A [3,2,2] by using two method of arrange matrix
in memory:

1. Row order

Loc(A[3,2,2])= 1000+2(3*3*(2-1)+3*(3-1)+2-1)
 = 1000 + 2(9+6+1)
 = 1032

2. Column order

Physical structure Logical structure

Physical structure Logical structure

Data Structures Academic Year 2017-2018

Loc(A[3,2,2])= 1000+2(3*3*(2-1)+3*(2-1)+3-1)
 = 1000 + 2(9+3+2)
 = 1028

H.W.
You have the matrix A [5,3,2] ,by using two method of arrange matrix in memory:

a. Draw logical structure and physical structure of the matrix A.
b. find the address of the element A [2, 2,3].

In general, we can find out the location of any element in array (NXMXRXl) by using

following formulas:
In case of Row Major Order:

LOC (A [i,j,k,l]) = Base (A) + w (NMR(l-1)+NM(k-1)+M(i-1)+j-LB)

 In case of Column Major Order:

LOC (A [i,j,k,l]) = Base (A) + w (NMR(l-1)+NM(k-1)+N(j-1)+i-LB)

Triangular Matrix

 A triangular matrix is a special kind of square matrix. A square matrix is called
lower triangular if all the entries above the main diagonal are zero. Similarly, a
square matrix is called upper triangular if all the entries below the main diagonal are
zero.

Data Structures Academic Year 2017-2018

We can find out the location of a[2,2]by using following formulas:

1. Upper triangular

In case of Row Major Order:

Loc (A [i, j]) = Base(A) + w(((i-1)*M - (i-1)*i/2) + (j-1))

suppose Base (A)=1000 , i=2, j=2 and w=2
LOC (A [2,2]) = 1000 + 2*((2-1)*3-(2-1)*2/2+2-1)
= 1000 + 2(3-1+1)
= 1000 + 2*3
= 1000 + 6
= 1006

In case of Column Major Order:

Loc (A[i, j]) = Base(A) + w((j-1) *j / 2 + (i-1))

 suppose Base (A)=1000 , i=2, j=2 and w=2
LOC (A [2,2]) = 1000 + 2*((2-1)*2/2+2-1)
= 1000 + 2(1+1)
= 1000 + 2*2
= 1000 + 4
= 1004

2. Lower triangular

In case of Row Major Order:

Loc (A [i,j]) =Base(A) + w((i-1) * i /2 + ([j-1))

 suppose Base (A)=1000 , i=2, j=2 and w=2
LOC (A [2,2]) = 1000 + 2*((2-1)*2/2+2-1)
= 1000 + 2(1+1)
= 1000 + 2*2
= 1000 + 4
= 1004

44

150

58

34

24

33

1000
1002
1004
1006
1008
1010

44

150

34

58

24

33

1000
1002
1004
1006

1008
1010

44

58

34

150

24

33

1000
1002
1004
1006
1008
1010

Address Elements

Address Elements

Address Elements

Data Structures Academic Year 2017-2018

In case of Column Major Order:

Loc (A [i,j]) = Base(A) + w(((j-1) *N - (j-1)*j/2) +(i-1))

 suppose Base (A)=1000 , i=2, j=2 and w=2
LOC (A [2,2]) = 1000 + 2*((2-1)*3 - (2-1)*2/2+2-1))
= 1000 + 2(3-1+1)
= 1000 + 2*3
= 1000 + 6
= 1006

Q: How determine the number of array elements?

Ans.: To determine the number of any array elements by applying the following equation:

where:
n is dimensions of the array
U : upper bound for dimension i
L: lower bound for dimension i

Example1: Find the number of positions required to store the array: A [5]

=5-0+1=6

Example2: Find the number of positions required to store the matrix: A [5, 6]

(5-0+1)*(6-0+1)=6*7=42

Example3: Find the number of positions required to store the matrix:
A[2..5, 6...8]

= (5-2+1)*(8-6+1) = 4*3 =12

44

58

150

34

24

33

1000
1002
1004
1006
1008
1010

Address Elements

Data Structures Academic Year 2017-2018

Arrays in programming languages

Arrays in C, C++
 we can declare an array by specifying its and size or by initializing it or by

both. For Example:
int arr[10]; // Array declaration by specifying size
int arr[] = {10, 20, 30, 40}; //Array declaration by initializing elements.. Compiler
 creates an array of size 4.

int arr[6] = {10, 20, 30, 40}; //Array declaration by specifying size and initializing
 elements

 Array elements are accessed by using an integer index. Array index starts
with 0 and goes till size of array minus 1. Following are few examples.

 int arr[5];
 arr[0] = 5;
 arr[2] = -10;
 arr[3/2] = 2; // this is same as arr[1] = 2
 arr[3] = arr[0];

 There is no index out of bound checking in C and C++:

int arr[2];
cout<< arr[3];

 In C it is not compiler error to initialize an array with more elements than specified
size.

int arr[2] = {10, 20, 30, 40, 50};
while in C++ , the program generates compiler error “error: too many initializes for
‘int [2]'”

 In C/C++, initialization of a multidimensional arrays can have left most

dimension as optional. Except the left most dimension, all other dimensions

must be specified. For example:
 int a[][2] = {{1,2},{3,4}};

Arrays in Java

 Arrays in Java work differently than they do in C/C++. Following are some
important point about Java arrays.

 In Java all arrays are dynamically allocated.
 Since arrays are objects in Java, we can find their length using member length.

This is different from C/C++ where we find length using sizeof.
 A Java array variable can also be declared like other variables with [] after the

data type.
 The variables in the array are ordered and each have an index beginning from 0.

Data Structures Academic Year 2017-2018

 In Java, all objects are dynamically allocated on Heap. This is different from C++

where objects can be allocated memory either on Stack or on Heap. In C++, when we

allocate object using new(), the object is allocated on Heap, otherwise on Stack if not

global or static.

 In Java, when we only declare a variable of a class type, only a reference is created

(memory is not allocated for the object). To allocate memory to an object, we must

use new(). So the object is always allocated memory on heap.

One-Dimensional Arrays :
The general form of a one-dimensional array declaration is:
 type var-name[];
 OR
 type[] var-name;

Example:
// both are valid declarations
int intArray[]; or int[] intArray;
float floatArray[];
double doubleArray[];
char charArray[];

Although the above first declaration establishes the fact that intArray is an array
variable, no array actually exists. It simply tells to the compiler that this(intArray)
variable will hold an array of the integer type. To link intArray with an actual,
physical array of integers, you must allocate one using new and assign it to intArray.

Instantiating an Array in Java
When an array us declared, only a reference of array is created. To actually create or
give memory to array, you create an array like this: The general form of new as it
applies to one-dimensional arrays appears as follows:
 var-name = new type [size];
Here, type specifies the type of data being allocated, size specifies the number of
elements in the array, and var-name is the name of array variable that is linked to
the array. That is, to use new to allocate an array, you must specify the type and
number of elements to allocate.

Example:
int intArray[]; //declaring array
intArray = new int[20]; // allocating memory to array
 OR
int[] intArray = new int[20]; // combining both statements in one

Note :
1. The elements in the array allocated by new will automatically be initialized

to zero (for numeric types), false (for boolean), or null (for reference types).
2. Obtaining an array is a two-step process. First, you must declare a variable of

the desired array type. Second, you must allocate the memory that will hold the

Data Structures Academic Year 2017-2018

array, using new, and assign it to the array variable. Thus, in Java all arrays are
dynamically allocated.

Array Literal
In a situation, where the size of the array and variables of array are already known,
array literals can be used.

int[] intArray = new int[]{ 1,2,3,4,5,6,7,8,9,10 }; // Declaring array literal

 The length of this array determines the length of the created array.
 There is no need to write the new int[] part in the latest versions of Java

Q:How to delete and insert an element from array?

Ans.: Insertion and deletion at particular position is complex, it require shifting as in

the following examples.

Insert item to sorted array

Q: Write a program to insert item to sorted array.

 Q: What happens if we try to access element outside the array size?

Data Structures Academic Year 2017-2018

Ans: Compiler error, indicate that array has been accessed with an illegal index. The
index is either negative or greater than or equal to size of array.
class example{
 public static void main (String[] args){
 int[] arr = new int[2];
 arr[0] = 10;
 arr[1] = 20;
 for (int i = 0; i <= arr.length; i++)
 System.out.println(arr[i]);}}

Two-Dimensional Arrays :

In Java Multidimensional arrays are arrays of arrays with each element of the array
holding the reference of other array. For example, 2D array is a 1D array of
references to 1D arrays, each of these 1D arrays (rows) can have a different length,
this 2D array is called "Jagged array".

 Examples of declare two-dimensional array:

int[][] intArray = new int[10][20]; //a 2D array or matrix

int[][][] intArray = new int[10][20][10]; //a 3D array

Example: In the following memory layout of a jagged array numArr.

 int[][] numArr = { {1,2,3}, {4,5,6,7}, {8,9} };

And jagged arrays can be created with the following code:
int [][]c;
c=new int[2][];
c[0]=new int[5];
c[1]=new int[3];

	Introduction
	where:
	Loc (ArrayName [k]): is the address of the kth element of ArrayName.
	Loc (ArrayName [1]): is the base address or address of first element of ArrayName. w : is the number of bytes taken by one element(element size). LB : is the lower bound.
	Example1 : Suppose we want to find out Loc (A [3]) that store as the following figure in two case (LB=1 and LB=0), for it, we have: Base(A)=1000, w = 2 bytes.
	in Case LB = 1
	LOC(A[3])=1000 + 2 (3 – 1) = 1000 + 2 (2) = 1000 + 4 = 1004
	Example: finding the location (address) of element in 2D
	Example: finding the location (address) of element in 2D (1)
	Note: if the value of w not determine, it suppose equal to 1.
	H.W.
	1. You have the matrix A [3, 4] and the base address is 1500. By using rows major order:
	a. Draw logical structure and physical structure of the matrix A.
	b. find the address of the element A [2, 3].
	2. You have the matrix B [5, 6] and the base address is 500. By using two method of arrange matrix in memory:
	a. Draw logical structure and physical structure of the matrix B.
	b. find the address of the element B [2, 3].
	In case three Dimensional Arrays, memory-address of the element A[i,j,K] with dimension (NXMXR) is given by:
	where: (1)
	Example : Suppose A3 x 3 X 3(N=3, M=3 and R=3) integer array A and base address =1000 and number of bytes(w)=2. find the location of A [3,2,2] by using two method of arrange matrix in memory:
	1. Row order
	H.W. (1)
	You have the matrix A [5,3,2] ,by using two method of arrange matrix in memory:
	a. Draw logical structure and physical structure of the matrix A. (1)
	b. find the address of the element A [2, 2,3].
	In general, we can find out the location of any element in array (NXMXRXl) by using following formulas:

	If Case LB = 0
	LOC(A[3])=1000 + 2 *3 = 1000 + 6 = 1006
	Arrays in programming languages
	Arrays in Java

